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• Do police target black drivers?
• Are there individual officers that appear to target 

minorities?
• Which officers are most likely to shoot?
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Racial Profiling Continues to Be a 
Concern
• I-95 “turnpike” studies in the mid-1990s raised 

public concern about racial profiling
• Public concern has led to state and local-level 

action
• Events periodically renew 

interest
– Questionable police 

shootings
– Arrest of Henry Louis 

Gates and the “beer 
summit” of July 2009



Mar 2016

Unfortunately, the Quality of the 
Analysis Using Collected Data Is Weak
• A large number of studies claim racial profiling

• Texas: Concluded that “75% of agencies stop more 
black and Latino drivers than white drivers”

• And some studies hastily conclude no profiling
• Sacramento: The percentage of black drivers stopped 

matched the percentage of blacks among crime suspect 
descriptions
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Why Is Testing for Racial Profiling So Hard?

Difference
Between And = Racial

Profiling

Racial Distribution of 
People Stopped

Racial Distribution of People at 
Risk of Being Stopped

Hispanic
(15%)

Black
(56%)

Other
(14%)White

(14%)

?
Source:  Oakland Police Department, 2003
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Racial Distribution of Residents 
According to the Census

Why Is Testing for Racial Profiling So Hard?

Difference
Between And = 1.6

Racial Distribution of 
People Stopped

Hispanic
(15%)

Black
(56%)

Other
(14%)White

(14%)
Other
(22%)Hispanic

(22%)

Black
(35%)

White
(21%)

Source:  Oakland Police Department, 2003 Source:  U.S. Census, 2000

• The 1.6 disparity between the racial distributions may result from:
• A race bias 
• Driving behavior:  car ownership, time on the road, and care
• Exposure to police by area of city, neighborhood characteristics, etc.
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Does the Ability to See the Driver 
Influence Which Drivers Are 
Stopped?

• The ability to discriminate requires officers to 
identify the race in advance

• The ability to identify race in advance of the stop 
decreases as it becomes dark

Grogger & Ridgeway (2006). “Testing for Racial Profiling in Traffic 
Stops from Behind a Veil of Darkness,” JASA 101(475):878-887

2007 ASA Outstanding Statistical Application award
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Simple “Veil of Darkness” Test 
Shows No Evidence of Racial Bias
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An Approach That Involved Adjusting for 
“Clock Time”

5:00pm 6:00pm 7:00pm 8:00pm 9:00pm

-4

-2

Sunset

2

4

Clock Time

Hours Since Sunset
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Compare Stops During Daylight 
with Stops in Darkness

5:00pm 6:00pm 7:00pm 8:00pm 9:00pm

-4

-2

Sunset

2

4

Clock Time

Hours Since Sunset

Stops at dark

Stops  during 
daylight
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There Is No Difference in the Rate that 
Black Drivers Are Stopped

5:00pm 6:00pm 7:00pm 8:00pm 9:00pm

-4

-2

Sunset

2

4

Clock Time

Hours Since Sunset

53% black

54% black
Stops at dark

Stops  during 
daylight
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Derivation of the VoD Estimator

• S – Stop
• B – Black driver
• V – Race is visible

• Kideal > 1 suggests officers 
are more likely to stop 
black drivers when their 
race is visible

𝑃𝑃(𝑆𝑆|𝐵𝐵, 𝑉𝑉)
𝑃𝑃(𝑆𝑆| �𝐵𝐵, 𝑉𝑉)

= 𝐾𝐾ideal
𝑃𝑃(𝑆𝑆|𝐵𝐵, �𝑉𝑉)
𝑃𝑃(𝑆𝑆| �𝐵𝐵, �𝑉𝑉)
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Derivation of the VoD Estimator

• S – Stop
• B – Black driver
• t – Clock time
• d – Darkness

• K > 1 suggests officers are 
more likely to stop black 
drivers when their race is 
visible

𝑃𝑃(𝑆𝑆|𝐵𝐵, 𝑡𝑡, 𝑑𝑑 = 0)
𝑃𝑃(𝑆𝑆| �𝐵𝐵, 𝑡𝑡, 𝑑𝑑 = 0)

= 𝐾𝐾
𝑃𝑃(𝑆𝑆|𝐵𝐵, 𝑡𝑡, 𝑑𝑑 = 1)
𝑃𝑃(𝑆𝑆| �𝐵𝐵, 𝑡𝑡, 𝑑𝑑 = 1)

1 < 𝐾𝐾 ≤ 𝐾𝐾ideal
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Decomposition of the VoD 
Estimator

𝐾𝐾 =
𝑃𝑃(𝐵𝐵|𝑅𝑅, 𝑆𝑆, 𝑡𝑡, 𝑑𝑑 = 0)

1 − 𝑃𝑃(𝐵𝐵|𝑅𝑅, 𝑆𝑆, 𝑡𝑡, 𝑑𝑑 = 0)
1 − 𝑃𝑃(𝐵𝐵|𝑅𝑅, 𝑆𝑆, 𝑡𝑡, 𝑑𝑑 = 1)
𝑃𝑃(𝐵𝐵|𝑅𝑅, 𝑆𝑆, 𝑡𝑡, 𝑑𝑑 = 1)

𝑃𝑃( �𝐵𝐵|𝑡𝑡, 𝑑𝑑 = 0)
𝑃𝑃(𝐵𝐵|𝑡𝑡, 𝑑𝑑 = 0)

𝑃𝑃(𝐵𝐵|𝑡𝑡, 𝑑𝑑 = 1)
𝑃𝑃( �𝐵𝐵|𝑡𝑡, 𝑑𝑑 = 1)

𝑃𝑃(𝑅𝑅| �𝐵𝐵, 𝑆𝑆, 𝑡𝑡, 𝑑𝑑 = 0)
𝑃𝑃(𝑅𝑅| �𝐵𝐵, 𝑆𝑆, 𝑡𝑡, 𝑑𝑑 = 1)

𝑃𝑃(𝑅𝑅|𝐵𝐵, 𝑆𝑆, 𝑡𝑡, 𝑑𝑑 = 1)
𝑃𝑃(𝑅𝑅|𝐵𝐵, 𝑆𝑆, 𝑡𝑡, 𝑑𝑑 = 0)
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VoD is Easily Implemented

• For each stop record race of driver, darkness 
indicator, and clock time

• Subset dataset to dates near the switch to/from 
Daylight Savings Time

• Logistic regression, predict race from darkness and 
clock time

• Report VoD estimate as K = exp(−𝛽𝛽1) 

Oakland 2003: K = 0.88
Cincinnati 2003-2008: K = 0.96
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VoD Has Become Widely Used 

• Connecticut
• San Diego
• Syracuse
• Urbana
• Minneapolis
• Raleigh-Durham
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Is an Officer Who Stops 86% Black 
Pedestrians Unusual?

Stop Characteristic Example Officer (%)
n = 392

% black pedestrians stopped 86%

• Combine three statistical techniques to answer this question
o Propensity score weighting
o Doubly robust estimation
o False discovery rate

G. Ridgeway and J.M. MacDonald (2009). “Doubly Robust 
Internal Benchmarking and False Discovery Rates for Detecting 
Racial Bias in Police Stops.” JASA 104:661–668
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We Know a Lot About the Environment of 
this Officer’s Stops

Stop Characteristic Example Officer (%)
n = 392

% black pedestrians stopped 86%
Month              January            3 

February           4 
March              8 

Day of the week    Monday             13 
Tuesday            11 
Wednesday          14 

Time of day        (4-6 p.m.]         9 
(6-8 p.m.]         8 
(8-10 p.m.]        23 
(10 p.m. -12 a.m.] 17 

Patrol borough     Brooklyn North     100 
Precinct           B                  98 

C                  1 
Outside            96 
In uniform         Yes                99 
Radio run          Yes                1 
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We Also Know the Exact Location of This 
Officer’s Stops

Example Officer
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Idea: Reweight Stops Made By Other 
Officers to Resemble This Officer’s Stops

• Align their distributions
𝑓𝑓 𝐱𝐱 𝑡𝑡 = 1 = 𝑤𝑤 𝐱𝐱 𝑓𝑓(𝐱𝐱|𝑡𝑡 = 0)

• Solving for 𝑤𝑤 𝐱𝐱  yields the 
propensity score weight

𝑤𝑤 𝐱𝐱 ∝
𝑃𝑃(𝑡𝑡 = 1|𝐱𝐱)

1 − 𝑃𝑃(𝑡𝑡 = 1|𝐱𝐱)

• Estimate 𝑃𝑃(𝑡𝑡 = 1|𝐱𝐱) using 
boosted logistic regression as 
implemented in gbm

Example Officer
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Reweighting Aligns the 
Distribution of Stop Locations

Example Officer Matched Stops
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Reweighting Also Aligns the Distribution 
of All Other Stop Features

Stop Characteristic Example Officer (%)
n = 392

Internal Benchmark (%)
ESS = 3,676

% black pedestrians stopped 86%
Month              January            3 3

February           4 4
March              8 9

Day of the week    Monday             13 13
Tuesday            11 10
Wednesday          14 15

Time of day        (4-6 p.m.]         9 10
(6-8 p.m.]         8 8
(8-10 p.m.]        23 23
(10 p.m. -12 a.m.] 17 17

Patrol borough     Brooklyn North     100 100
Precinct           B                  98 98

C                  1 1
Outside            96 94
In uniform         Yes                99 97
Radio run          Yes                1 3
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Colleagues at the Same Time, Place, and 
Context Stop 55% Black Pedestrians

Stop Characteristic Example Officer (%)
n = 392

Internal Benchmark (%)
ESS = 3,676

% black pedestrians stopped 86% 55%
Month              January            3 3

February           4 4
March              8 9

Day of the week    Monday             13 13
Tuesday            11 10
Wednesday          14 15

Time of day        (4-6 p.m.]         9 10
(6-8 p.m.]         8 8
(8-10 p.m.]        23 23
(10 p.m. -12 a.m.] 17 17

Patrol borough     Brooklyn North     100 100
Precinct           B                  98 98

C                  1 1
Outside            96 94
In uniform         Yes                99 97
Radio run          Yes                1 3
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86% of the Officer’s Stops Were 
Black…
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…Compared with 55% for the 
Benchmark
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0 • Doubly robust benchmark estimate 
obtainable from weighted logistic 
regression

ℓ(𝜷𝜷) = �
𝒊𝒊=𝟏𝟏

𝒏𝒏

𝑤𝑤𝑖𝑖 𝑦𝑦𝑖𝑖𝑠𝑠 𝑡𝑡𝑖𝑖, 𝐱𝐱𝑖𝑖 𝜷𝜷 − log 1 + 𝑒𝑒𝑠𝑠(𝑡𝑡𝑖𝑖,𝐱𝐱𝑖𝑖|𝜷𝜷) 

• Disparity computed as
�𝜃𝜃𝐴𝐴𝐷𝐷𝐷𝐷 = �

𝒊𝒊=𝟏𝟏

𝒏𝒏

𝑡𝑡𝑖𝑖
1

1 + exp −𝑠𝑠 1, 𝐱𝐱𝑖𝑖 �𝜷𝜷
−

1

1 + exp −𝑠𝑠 0, 𝐱𝐱𝑖𝑖 �𝜷𝜷
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Repeat for Nearly 3,000 NYPD 
Officers Actively Involved in Stops

• 𝑃𝑃 problem 𝑧𝑧 = 1 − 𝑓𝑓(𝑧𝑧|no problem)𝑓𝑓 no problem
𝑓𝑓 𝑧𝑧

 ≥ 1 −
𝑓𝑓0(𝑧𝑧)
𝑓𝑓(𝑧𝑧)

• Right tail consists of 5 officers with “problem officer” probabilities in 
excess of 50%

• Standard cutoff of z > 2.0 flags 242 officers, 90% of which have fdr 
estimated to be greater than 0.999

z
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Analysis in NYPD Flagged Five 
Officers

A B C D E

Flagged officer
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• Which officers are most likely to shoot?
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Police Use of Lethal Force 
Sparks Unrest
• 2001 Cincinnati PD shooting of 

Timothy Thomas resulted in 4 days 
of riots and $3.6M in damage

• 2006 NYPD shooting of Sean Bell, 
50 shots fired. Officers found not 
guilty at trial, but fired or resigned

• 2014 Chicago PD shooting of 
Laquan McDonald. 16 bullets fired 
by one officer, no other officer fired



Mar 2016

McElvain and Kposowa (2008) 
Compared Shooters to Non-Shooters
• Riverside County Sheriff Department

• 186 shooting incidents involving 314 deputies
• Control group consisted of 334 deputies with no 

involvement in shooting incidents
• Data for shooters collected at time of shooting, controls 

collected in 2004
• Shooters were more likely to be male, Hispanic, no 

college, younger, and in lower ranks
• Unmeasured confounding is a major concern in 

such a study design
Fyfe (1989) states that “there is virtually no empirical support for 
assertions that individual officer characteristics are measurably 

related to any type of performance in office”
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NYPD Sought a Comprehensive 
Review of Firearm Practices
• Prompted by controversy surrounding an officer-involved 

shooting, NYPD Police Commissioner sought a review of:
• Initial firearms training provided to new recruits 
• In-service firearms training
• Firearms Discharge Review Board functions and processes
• The phenomenon of reflexive shooting

“The characteristics of officers involved in discharge incidents 
will be examined for patterns in training, experience, 

supervision, and other factors that may help predict, and thus 
reduce, firearms discharges generally and inappropriate 

discharges in particular”
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Assessing Officer Risk Factors 
Requires Controlled Comparison

• Officers that discharge their weapons often look 
different from other officers in obvious ways, such as

• In the field
• In particular neighborhoods 
• Conducting higher risk operations
• Not at a desk

• Idea: Compare shooting officer to other non-shooting 
officers on the scene

• Does not judge shooting justification
• But if there is a consistent pattern it could inform training or 

assignments
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Each Shooting Is an Experiment

1. Multiple officers on the scene
2. Each officer has a latent risk of shooting
3. Before the shooting, each officer on the scene could 

have been the shooter
4. Test whether there are officer features that affect the 

risk of shooting

G. Ridgeway (2016). “Officer Risk Factors Associated with Police Shootings: 
A Matched Case-Control Study,” Statistics and Public Policy
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Learn the Factors Affecting the 
Probability of Shooting

log
𝑃𝑃(𝑆𝑆 = 1|𝐱𝐱, 𝐳𝐳)

1 − 𝑃𝑃(𝑆𝑆 = 1|𝐱𝐱, 𝐳𝐳)
= ℎ z + 𝛽𝛽1𝑥𝑥1+𝛽𝛽2𝑥𝑥2 + ⋯+ 𝛽𝛽𝑑𝑑𝑥𝑥𝑑𝑑

• S indicates that the officer shoots
• x are the officer’s features
• z are the features of a particular scenario (kinds of 

suspects involved, location, and lighting)

Collected data do not quite match this framework
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Utilized Data on a Review of 
Three Years of OIS Records

• Gathered data on all officer-involved shootings 
adjudicated in 2004, 2005, and 2006

• For each shooting I recorded 
• department ID numbers for shooters in the incident
• department ID numbers for non-shooting officers that were 

witnesses or in the immediate vicinity of the shooting
• 106 incidents involving 150 shooting officers and 141 

non-shooting officers
• Collected data on age, experience, education, training, 

and past performance
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𝑃𝑃 𝑆𝑆𝐴𝐴 = 1, 𝑆𝑆𝐵𝐵 = 0 𝑆𝑆𝐴𝐴 + 𝑆𝑆𝐵𝐵 = 1, 𝐱𝐱𝐴𝐴, 𝐱𝐱𝐵𝐵, 𝐳𝐳 =

𝑃𝑃 𝑆𝑆𝐴𝐴 + 𝑆𝑆𝐵𝐵 = 1 𝑆𝑆𝐴𝐴 = 1, 𝑆𝑆𝐵𝐵 = 0, 𝐱𝐱𝐴𝐴, 𝐱𝐱𝐵𝐵, 𝐳𝐳 𝑃𝑃(𝑆𝑆𝐴𝐴 = 1, 𝑆𝑆𝐵𝐵 = 0|𝐱𝐱𝐴𝐴, 𝐱𝐱𝐵𝐵, 𝐳𝐳)
𝑃𝑃(𝑆𝑆𝐴𝐴 + 𝑆𝑆𝐵𝐵 = 1|𝐱𝐱𝐴𝐴, 𝐱𝐱𝐵𝐵, 𝐳𝐳)

=

𝑃𝑃(𝑆𝑆𝐴𝐴 = 1|𝐱𝐱𝐴𝐴, 𝐳𝐳)𝑃𝑃(𝑆𝑆𝐵𝐵 = 0|𝐱𝐱𝐵𝐵, 𝐳𝐳)
𝑃𝑃 𝑆𝑆𝐴𝐴 = 1 𝐱𝐱𝐴𝐴, 𝐳𝐳 𝑃𝑃 𝑆𝑆𝐵𝐵 = 0 𝐱𝐱𝐵𝐵, 𝐳𝐳 + 𝑃𝑃(𝑆𝑆𝐴𝐴 = 0|𝐱𝐱𝐴𝐴, 𝐳𝐳)𝑃𝑃(𝑆𝑆𝐵𝐵 = 1|𝐱𝐱𝐵𝐵, 𝐳𝐳)

Consider the Likelihood of a 
Shooting Involving Two Officers
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𝑒𝑒ℎ 𝐳𝐳 +𝛽𝛽′𝑥𝑥𝐴𝐴

1 + 𝑒𝑒ℎ 𝐳𝐳 +𝛽𝛽′𝑥𝑥𝐴𝐴
1

1 + 𝑒𝑒ℎ 𝐳𝐳 +𝛽𝛽′𝑥𝑥𝐵𝐵

𝑒𝑒ℎ 𝐳𝐳 +𝛽𝛽′𝑥𝑥𝐴𝐴

1 + 𝑒𝑒ℎ 𝐳𝐳 +𝛽𝛽′𝑥𝑥𝐴𝐴
1

1 + 𝑒𝑒ℎ 𝐳𝐳 +𝛽𝛽′𝑥𝑥𝐵𝐵
+ 1

1 + 𝑒𝑒ℎ 𝐳𝐳 +𝛽𝛽′𝑥𝑥𝐴𝐴
𝑒𝑒ℎ 𝐳𝐳 +𝛽𝛽′𝑥𝑥𝐵𝐵

1 + 𝑒𝑒ℎ 𝐳𝐳 +𝛽𝛽′𝑥𝑥𝐵𝐵

=

𝑒𝑒ℎ 𝐳𝐳 +𝛽𝛽′𝑥𝑥𝐴𝐴

𝑒𝑒ℎ 𝐳𝐳 +𝛽𝛽′𝑥𝑥𝐴𝐴 + 𝑒𝑒ℎ 𝐳𝐳 +𝛽𝛽′𝑥𝑥𝐵𝐵
=

𝑒𝑒𝛽𝛽′𝑥𝑥𝐴𝐴

𝑒𝑒𝛽𝛽′𝑥𝑥𝐴𝐴 + 𝑒𝑒𝛽𝛽′𝑥𝑥𝐵𝐵

Substituting Simplifies the Model

𝑃𝑃 𝑆𝑆𝐴𝐴 = 1 𝐱𝐱𝐴𝐴, 𝐳𝐳 𝑃𝑃 𝑆𝑆𝐵𝐵 = 0 𝐱𝐱𝐵𝐵, 𝐳𝐳
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Who Is More Likely to Shoot?
Variable Risk difference
Rank

Police officer (reference)
Detective 
Sergeant 
Lieutenant
Captain

• If an OIS occurs and an officer at each of these ranks is on the 
scene, who is most likely to be the shooter?
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Supervisors and Management Ranks Are 
Less Likely to Shoot

Variable Risk difference
Rank

Police officer (reference)
Detective No difference
Sergeant -74%
Lieutenant -95%
Captain -96%
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Who Is More Likely to Shoot?
Variable Risk difference
Rank

Police officer (reference)
Detective No difference
Sergeant -74%
Lieutenant -95%
Captain -96%

Male
Race

White (reference)
Black 
Hispanic
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Black Officers More Likely to Shoot

Variable Risk difference
Rank

Police officer (reference)
Detective No difference
Sergeant -74%
Lieutenant -95%
Captain -96%

Male No difference
Race

White (reference)
Black +226%
Hispanic No difference
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Each Additional Year of Recruiting 
Age Decreases Risk by 11%

Variable Risk difference
Rank

Police officer (reference)
Detective No difference
Sergeant -74%
Lieutenant -95%
Captain -96%

Male No difference
Race

White (reference)
Black +226%
Hispanic No difference

Years at NYPD No difference
Age when recruited -11%
Education No difference
Special assignment No difference
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Tracked Annual Activity

Variable Risk difference
Average annual
Evaluation score < 3.5 
Range score < 86
Complaints > 0.6
Medal count > 3.8
CPI points > 3.1
Gun arrests > 2.4
Felony arrests > 9.3 
Misdemeanor arrests > 10.0
Days of leave
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Rapid Accumulation of Negative Marks 
Signals Elevated Shooting Risk

Variable Risk difference
Average annual
Evaluation score < 3.5 
Range score < 86
Complaints > 0.6
Medal count > 3.8
CPI points > 3.1 +212%
Gun arrests > 2.4
Felony arrests > 9.3
Misdemeanor arrests > 10.0 -80%
Days of leave

8% of NYPD officers
15% of shooting scene officers
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Central Personnel Index Assign 
Points to Problematic Incidents

Event Point value
Suspension 8
Loss of firearm 6
Negative evaluation - A 5
Fail to safeguard weapon 5
Chronic sick – B 4
Loss of shield 4
Negative evaluation – B 3
Chronic sick – A 2
Firearm discharge 1
Dept. auto accident 1
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Exceeding 3.1 CPI/year Strongly 
Associated with Shooting Risk

0 1 2 3 4 5

0
2

4
6

8
10

CPI points/year

Odds of being a 
shooting officer 

relative to officers 
with zero CPI 

points
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“Active” Officer May Be Key Factor
Variable Risk difference
Average annual
Evaluation score < 3.5 No difference
Range score < 86 No difference
Complaints > 0.6 +107%
Medal count > 3.8 +128%
CPI points > 3.1 +212%
Gun arrests > 2.4 No difference
Felony arrests > 9.3 +115%
Misdemeanor arrests > 10.0 -80%
Days of leave No difference
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Statistics Can Have a Prominent 
Role in Crime and Justice Policy
• Do police target black drivers?
• Are there individual officers that appear to target 

minorities?
• Which officers are most likely to shoot?
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Some current research…

• Average amount of marijuana in a joint
• Effect of gang injunctions on crime
• Effect of transit systems on crime
• Capture-recapture to estimate policing undercount
• Racial bias in New York state sentencing
• Graphical processing units in statistical computing
• Violence prevention in West Philadelphia
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